
Polynomial stabilizability by optimal control.

M. Zaghdoudi

Monastir October 30,2019

Université de Carthage

Laboratoire d’Ingénierie Mathématiques (LIM-EPT)



Plan

I Polynomial stability and stabilization

II Polynomial stabilization by optimal control

III Inverse optimal control

This is a joint work with C. Jammazi.

2



I Polynomial stability and stabilization
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1 Problems in control theory

ẋ = X (x, u)

where x ∈Rn is the state and u ∈Rm is the control.

Ï Controllability : Steer a system from an initial configuration to a final

configuration.

Ï Optimal control : Finding a control law for a given system such that a

certain optimality criterion is achieved.

Ï Stabilization : Stabilize the system for make it insensitive to certain

perturbations.

Ï Observation : Reconstruct the full state of the system from partial data.
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2 Control theory and applications

Drone Navire

Fusée Satellite
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3 Obstruction to exponential stability

Ï The linearization matrix A := D X (0) near zero is not Hurwitz.

Ï The solution does not decrease exponentially.

Ï Instead, it may sometimes be proved that the solutions decrease like
c

tα
, it is rational stability i.e.

||x(t )|| ' c

tα
, α> 0.

Ï Example : the scalar system ẋ =−x2 p+1, p ∈N∗ is polynomially stable.

By simple integration we have ||x(t )|| ≤ c

(a t +b)
1

2 p

.
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4 Notion of polynomial stability

Let the dynamical systems

(1) ẋ1 = X1(x1, x2), ẋ2 = X2(x1, x2),

X = (X1, X2) is a continuous vector field defined on Rp × Rn−p

x := (x1, x2) ∈Rp ×Rn−p is the state.

(2) X1(0, x2) = 0 and X2(0, x2) = 0 ∀x2 ∈Rn−p ,

x(0) = (x1(0), x2(0)) is the initial condition.
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5 Polynomial stability in partial sense

Definition : Appl. Math. Comput.2013

The system (1) is said to be p-rational partially stable if the following pro-

perties are satisfied

Ï The origin (0, 0) of the system (1) is Lyapunov stable :

∀ε> 0, ∃η> 0 : (|x(0)| < η) ⇒ (|x(t )| < ε ∀t ≥ 0).

Ï There exist positive numbers M , k, η, r with η≤ 1 such that if |x(0)| ≤ r

then 
|x1(t )| ≤ M |x(0)|η

(1+|x(0)|k t )k
, ∀ t ≥ 0,

lim
t→+∞x2(t ) = a(x(0)),

where a(x(0)) is a constant vector depending on initial conditions.
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6 Polynomial stabilisability in partial sense

Definition

Let be the control system

(3)

{
ẋ = X (x, u)

X (0, 0) = 0,

where x ∈ Rn is the state, u ∈ Rm the control, and X ∈C 0(Rn+m , Rn). System

(3) is p-partially rationally stabilizable, if there exists a continuous feedback

x 7→ u(x) such that, for every x2 ∈Rn−p , u(0, x2) = 0, and (0,0) ∈Rp ×Rn−p is

p-rationally stable for the closed loop system ẋ = X (x,u(x)).

Remark

Obviously, the case n = p corresponds to complete rational stability of sys-

tem (1).
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8 Sufficient conditions for polynomial stability

Proposition : Nonlinear Analysis-2019

Consider the dynamical system (1), we assume that there exist a locally Lip-

schitz function V :Rn →R, some positive constants c1, c2, r1 and r2 such that

(a) there exists ε> 0, such that for every x ; |x| < ε, V satisfies

c1 |x|r1 ÉV (x) É c2 |x|r2 ,

(b) there exist c > 0 and α> 0 such that

(4) D+V (x(t ))+ cV 1+α(x(t )) É 0.

Then 0 ∈ Rn is locally rationally stable. Moreover, if the first condition holds

for all x ∈Rn , then 0 ∈Rn is globally rationally stable.
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9 Polynomial stability in partial sense

Example :

(5) ẋ =−xr , ẏ =−y x2,

where r ∈Q+
odd

⋂
(1, +∞).

Q+
odd = {r ∈Q+ : r = p

q
, where p and q are odd non negative integers}.

X : (x, y) 7→ X (x, y) = (−xr , −y x2) is not onto

V = 1

2
(x2 + y2), V̇ =−xr+1 −x2 y2 É 0.

W (x) =V (x, 0)

Ẇ É−cW (r+1)/2, in particular

|x(t )| É k

t 1/(r−1)
.
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where r ∈Q+
odd

⋂
(1, +∞).

Q+
odd = {r ∈Q+ : r = p

q
, where p and q are odd non negative integers}.

X : (x, y) 7→ X (x, y) = (−xr , −y x2) is not onto

V = 1

2
(x2 + y2), V̇ =−xr+1 −x2 y2 É 0.

W (x) =V (x, 0)

Ẇ É−cW (r+1)/2, in particular

|x(t )| É k

t 1/(r−1)
.

12



9 Polynomial stability in partial sense

Example :
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10 Polynomial stability in partial sense

If we choose, r < 3 then we get t 7→ x2(t ) is Lebesgue integrable in the

neighborhood of +∞.

There exists η> 0 such that |x(0), y(0))| < η then the integral∫ +∞
0 |y(s)x2(s)|d s <∞ which implies the convergence of y.

vvv
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II Polynomial stabilization by optimal control

1 Sufficient conditions for polynomial stabilization by optimal control

2 Application to systems with drift in Vorotnikov sense

3 Example
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1/1 Sufficient conditions for polynomial stability

(6) ẋ1 = X1(x, u)ẋ2 = X2(x, u)

(7) X1(0, x2, 0) = 0 and X2(0, x2, 0) = 0 ∀x2 ∈Rn−p .

(8) J (x(0), u) =
∫ +∞

0
L(x(t ), u(t ))d t .

Γ(x(0)) := {u : u is admissible, x(t ) = (x1(t ), x2(t )) solution of (6)

such that |x1(t )| ≤ c

tα
and x2(t ) → c ∈Rn−p }.
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1/2 Optimal control

Bernstein :93 Optimal feedback of nonlinear regulation problems involving

a non quadratic cost functionals, the Hamilton—Jacobi—Bellman

approach is used.

Haddad et al :2014 Singular control for Linear Semistabilization

L’Affalito et al :2015 Asymptotic stabilization (resp. finite-time

stabilization) with respect to part of the system....

Problem

(P ) : J (x(0), u∗) = min
u∈Γ

∫ +∞

0
L(x(t ), u(t ))d t ,

where L :Rn ×Rm →R is continuous and positive function.
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1/3 Sufficient conditions for polynomial stabilization by optimal

control

Proposition

Assume that there exist a C 1 function V : O × Rn−p → R, some positive

constants c1, c2, r1, r2, c, α, a continuous function u∗ : O ×Rn−p →U such

that u∗(0, x2) = 0, ∀x2 ∈Rn−p and

(a)

(9) c1 |x1|r1 ≤V (x) ≤ c2 |x1|r2 , ∀x1 ∈O ,

(10) V̇ (x) ≤−c V α+1,

(11) (∃η> 0 : |x(0)| < η) ⇒
∫ +∞

0
|X2(x(s), u∗(x(s)))|d s <∞,
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1/4 Sufficient conditions for polynomial stabilization by optimal

control

(b) for every x = (x1, x2) ∈O ×Rn−p : V and L satisfy

(12) L(x, u∗)+∇V (x) ·X (x, u∗) = 0

(13) L(x, u)+∇V (x) ·X (x, u) ≥ 0.

Then, the system (6) is p-partially locally rationally stabilizable, and

(14) J (x(0), u∗) =V (x(0)).

Furthermore the feedback control u∗ minimizes J in the sense that

(15) J (x(0), u∗) = min
u∈Γ(x(0))

J (x(0), u).

u∗ := ar g mi nu∈Γ(x(0))[L(x, u)+∇V (x) ·X (x, u)].
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II Polynomial stabilization by optimal control

1 Sufficient conditions for polynomial stabilization by optimal control

2 Application to systems with drift in Vorotnikov sense

3 Example
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2/1 Application to systems with drift in Vorotnikov sense

(16)

{
ẋ1 = f1(x)+G1(x)u

ẋ2 = f2(x)+G2(x)u,

where x = (x1, x2) ∈Rp ×Rn−p , u ∈Rm , f = ( f1, f2) defined on Rp ×Rn−p

and G = (G1, G2) :Rp ×Rn−p →Rp×(n−p)×m .

(17) J (x(0), u) =
∫ +∞

0
L(x, u(t )) d t .

(18) L(x, u) = L1(x)+L2(x)u +uT R u,

where R :Rm →Rm×m is positive definite matrix-valued function.

Λ(x(0)) := {u : u is admissible, x(t ) = (x1(t ), x2(t ))

solution of (16) and |x1(t )| ≤ c

tα
}.
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2/2 Application to systems with drift in Vorotnikov sense

Proposition

Consider the system with drift (16) with cost functional (17). We assume that

there exist a C 1− function V : Rp ×Rn−p → R and some positive constants

c1, c2, r1, r2, r3, c, α such that

(a) for every x ∈Rn ,

(19) c1 |x1|r1 ≤V (x) ≤ c2 |x1|r2 ,

(20) L f V (x)− 1

2
LGV (x)R−1 LT

2 (x)− 1

2
LGV (x)R−1(LGV (x))T ≤−c V α+1

(b)

(21) L2(0, x2) = 0, ∀ x2 ∈Rn−p
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2/3 Application to systems with drift in Vorotnikov sense

L1(x)+L f V (x)− 1
4 [LGV (x)+L2(x)] ·R−1 [LGV (x)+L2(x)]T = 0.(22)

Then the system (16) is p-partially rationally stable with Vorotnikov sense

under the optimal feedback

(23) u∗ :=−1

2
R−1 [L2(x)+LGV (x)]T .

In addition, u∗ minimizes the cost functional J in the sense that

(24) J (x(0), u∗) = min
u∈Λ(x(0))

J (x(0), u),

and

(25) J (x(0), u∗) =V (x(0)).
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II Polynomial stabilization by optimal control

1 Sufficient conditions for polynomial stabilization by optimal control

2 Application to systems with drift in Vorotnikov sense

3 Example
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3/1 Example

The model of spacecraft with two axis :

(26)


ω̇1 = α1 u1

ω̇2 = α1 u2

ω̇3 = α3 u1 +α4 u2,

where

Ï x = (ωi )T
1ÉiÉ3 ∈R3 is the state and denote the components of the

angular velocity vector with respect to a given inertial reference frame

expressed in a central body reference frame,

Ï u1, u2 are the spacecraft control moments,

24



3/2 Example

(27) J (x(0), u) =
∫ +∞

0

1

16
α2

1 |x1|
4k
p +2, p, k ∈R∗,

V (x) = p

4(k +p)
|x1|

2k
p +2, p, k ∈R∗

+.

(28)

 u∗
1 (x) = −1

4 α1 |x1|
2k
p ω1

u∗
2 (x) = −1

4 α1 |x1|
2k
p ω2,

(29) |ωi (t )| ≤
p

c1

t
p

2k

, i = 1, 2,

if p > 2k, then the solutions ωi (t ), i = 1, 2 are Lebesgue-integrable, then the

state ω3(t ) converges.
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III Inverse optimal control
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1 Inverse optimal control

• Problem :

Given a control system,

ẋ = f (x, u),

a specific feedback law control u∗ stabilizes this system, with respect to a

positive definite radially unbounded Lyapunov function V .

• Goal :

to find a Lagrangian function L for which this control u∗ is optimal in

integral cost sense.
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2 Inverse optimal control

1. Freeman et Kokotovic :96 Optimalité inverse pour la stabilisation

robuste.

2. Tsiotras :99 Optimalité inverse pour la stabilisation d’un satellite.

3. Edouard et al :2014 Problème de contrôle optimal inverse avec une

optimisation polynomiale.

4. Haddad :2014, L’Afflitto al :2015, 2016 Stabilisation asymptotique

(respectivement en temps fini) par rapport à une partie du système

par un contrôle optimal inverse...
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3 Inverse optimal control

Proposition

Consider the system with drift (16) subject to cost functional (17). We

assume that there exist a C 1− function V and some positive constants

c1, c2, r1, r2, r3 c, α such that the set of conditions hold

(a)

c1 |x|r1 ≤V (x) ≤ c2 |x|r2 ,

for every x ∈Rn

L f V (x)− 1

2
LGV (x)R−1 LT

2 (x)− 1

2
LGV (x)R−1 (LGV (x))T ≤−c V α+1(x)

(b)

L2(0, x2) = 0, ∀x2 ∈Rn−p

then under the feedback

29



4 Inverse optimal control

u∗ :=−1

2
R−1. [L2(x)+LGV (x)]T ,

the closed loop system (16) is partially rationally stable in Vorotnikov sense.

Furthermore u∗ is optimal with respect the cost functional (17), where

L1(x) = u∗T (x)R.u∗(x)−L f V (x)

i.e. J is minimized in the sense (24) and (25).
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5 Example

The model of spacecraft with one axe of symmetry :

(30)


ω̇1 = I23ω2ω3 +u1

ω̇2 = −I23ω3ω1 +u2

ω̇3 = α3 u1 +α4 u2,

Ï x := (ωi )T
1ÉiÉ3 ∈R3 is the state and denote the components of the

angular velocity vector with respect to a given inertial reference.

Ï u1, u2 are the spacecraft control moments.

Ï α3, α4 ∈R.

Ï I23 = I2 − I3

I1
, I1, I2 and I3 are the principal moments of inertia of the

spacecraft such that 0 < I1 = I2 < I3.

31



6 Example

(31) V (x) = p

2(p +k)
|x1|

2k
p +2, p, k ∈R∗

+.

(32)

 u∗
1 = I23ω2ω3 − 1

2 (ω2
1 +ω2

2)
k
p ω1

u∗
2 = −I23ω3ω1 − 1

2 (ω2
1 +ω2

2)
k
p ω2,

|ωi (t )| ∼+∞
c

t
p

2k

, i = 1, 2,

p > max(1, 2k), ω3 converge.

L1(x) = u∗T (x)R(x)u∗(x)−V ′(x) f (x) = (I23ω2ω3)2+(I23ω3ω1)2+1

2
|x1|4

k
p +2,

J (x(0), u) =
∫ +∞

0
L(x, u(t ))d s.
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Thank you for your attention

vvvvvv


