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0 Polynomial stability and stabilization

m Polynomial stabilization by optimal control
@ Inverse optimal control

This is a joint work with C. Jammazi.
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@ Problems in control theory

x=X(x, u)

where x € R" is the state and u € R™ is the control.

» Controllability : Steer a system from an initial configuration to a final
configuration.

» Optimal control : Finding a control law for a given system such that a

certain optimality criterion is achieved.

» Stabilization : Stabilize the system for make it insensitive to certain
perturbations.

» Observation : Reconstruct the full state of the system from partial data.



@ Control theory and applications

Fusée Satellite
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© Obstruction to exponential stability

\4

The linearization matrix A := DX (0) near zero is not Hurwitz.

v

The solution does not decrease exponentially.

v

Instead, it may sometimes be proved that the solutions decrease like

c .. . qes s
—, itis rational stability i.e.
ta

c
x(D]] = 2o @>0.

v

Example : the scalar system & = —x?>P*!, p € N* is polynomially stable.

By simple integration we have |[|x(f)|| = -
(at+Db)zr



@ Notion of polynomial stability

Let the dynamical systems
1 X1 = X1 (x1, X2), X2 = Xo(x1, x2),

X = (Xj, X») is a continuous vector field defined on R? x R"?~P

Xx:=(x1, x2) € RP x R"P is the state.
) X1(0, x2) =0 and X»(0, x) =0 Vx, e R" P,

x(0) = (x1(0), x2(0)) is the initial condition.



e Polynomial stability in partial sense

Definition : Appl. Math. Comput.2013

The system (1) is said to be p-rational partially stable if the following pro-
perties are satisfied
» The origin (0, 0) of the system (1) is Lyapunov stable :
Ve>0,dn>0: (|x(0)|<n) = (|x(H)|<e VE=0).
» There exist positive numbers M, k, n, r with 7 < 1 such that if |x(0)| < r

then
M|x(0)|"

f) < —AXOF
Ol G ok oF

lim x,(f) = a(x(0)),
—+o00

where a(x(0)) is a constant vector depending on initial conditions.




@ Polynomial stabilisability in partial sense

Let be the control system

G { i=X(x, w

X(0,0)=0,

where x € R" is the state, u € R the control, and X € CO(R"", R"). System
(3) is p-partially rationally stabilizable, if there exists a continuous feedback

x — u(x) such that, for every x, € R"~”, u(0, xp) =0, and (0,0) € R” x R"~” is

p-rationally stable for the closed loop system x = X (x, u(x)).

Obviously, the case n = p corresponds to complete rational stability of sys-
tem (1).




0 Polynomial stabilisability in partial sense

[@ A.Bacciotti. Stability analysis based on direct Lyapunov method,
chapter Lecteurs given at the Summer School on Mathematical Control
Theory, pages 315-363. 2001.

[@ A.Bacciotti. Stability by damping control. Differential Equations and
Dynamical Systems, 10 :331-341, 2002.

[§ A.Bacciotti and L. Rosier. Liapunov Functions and Stability in Control
Theory. Communications and Control Engineering, Springer-Verlag,
2005.

[§ C.Jammazi and M. Zaghdoudi. On the rational stabiliy of autonomous
dynamical systems. Applications to chained systems. Appl. Math.
Comput. 219 (2013), 10158-10171..
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@ Sufficient conditions for polynomial stability

Proposition : Nonlinear Analysis-2019

Consider the dynamical system (1), we assume that there exist a locally Lip-
schitz function V : R"” — R, some positive constants cj, ¢z, r1 and r, such that

(a) there exists € > 0, such that for every x; |x| < €, V satisfies
alxl" < V() <clxl,

(b) there exist ¢ > 0 and & > 0 such that

(4) DTV (x(2) + V' (x(2) <0.

Then 0 € R” is locally rationally stable. Moreover, if the first condition holds

for all x e R”, then 0 € R” is globally rationally stable.
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@ Polynomial stability in partial sense

Example :
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@ Polynomial stability in partial sense
Example :
) x=—x", y=-yx?

where r € Q;rddﬂ(l, +00).

@;dd ={reQ;:r= Z, where pand g are odd non negative integers}.
X:(x,¥)— X(x,y) = (=x", —yx?) is not onto

1 .
V= E(x2+y2), V=-x""-x*y<0.

W(x)=V(x,0)

W < —cWU D2 in particular

X< S5+

12



@ Polynomial stability in partial sense

If we choose, r < 3 then we get ¢ — x?(t) is Lebesgue integrable in the
neighborhood of +oo.
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m Polynomial stabilization by optimal control

o Sufficient conditions for polynomial stabilization by optimal control

Q
9

14



@ Sufficient conditions for polynomial stability

(6) X1 =X1(x, w)x2 = Xo(x, u)

7 X100, x2,0) =0 and X»(0, xo,0) =0 Vx, e R"7P.

15



@ Sufficient conditions for polynomial stability

(6) X1 =X1(x, w)xo = Xo(x, u)
7 X100, x2,0) =0 and X»(0, xo,0) =0 Vx, e R"7P.
+00
(8) J(x(0), u) 2[ L(x(t), u(n)dt.
0

15



@ Sufficient conditions for polynomial stability

(6) X1 =X1(x, iz = Xo(x, u)
7 X100, x2,0) =0 and X»(0, xo,0) =0 Vx, e R"7P.
+00
(8) J(x(0), u) 2[ L(x(t), u(t)dt.
0

I'(x(0)) := {u: u is admissible, x(1) = (x; (), x2(#)) solution of (6)

such that |x1(1)] < t% and x»(t) — ce R"P}.
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@ Optimal control

Bernstein :93 Optimal feedback of nonlinear regulation problems involving
a non quadratic cost functionals, the Hamilton—Jacobi—Bellman
approach is used.

Haddad et al :2014 Singular control for Linear Semistabilization

LAffalito et al :2015 Asymptotic stabilization (resp. finite-time
stabilization) with respect to part of the system....
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@ Optimal control

Bernstein :93 Optimal feedback of nonlinear regulation problems involving
a non quadratic cost functionals, the Hamilton—Jacobi—Bellman
approach is used.

Haddad et al :2014 Singular control for Linear Semistabilization

LAffalito et al :2015 Asymptotic stabilization (resp. finite-time
stabilization) with respect to part of the system....

Problem

+00

(@): J(x(0), u™) = minf L(x(1), u(n))dt,
uel’ Jo

where L:R" x R™ — R is continuous and positive function.
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@ Sufficient conditions for polynomial stabilization by optimal
control

Assume that there exist a ¢! function V : @ x R" P — R, some positive
constants cj, ¢, 11, 2, ¢, &, a continuous function u* : @ x R" P — 9 such
that u* (0, x) =0, Vx, e R""P and
(@
€) alal"=sV(@ <clxl? Yy €0,
(10) V(x)<—-cVe
+00

(11) An>0:|x00)|<n) > f | X2 (x(s), u* (x(s)))|ds < oo,

0
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@ Sufficient conditions for polynomial stabilization by optimal
control

(b) for every x = (x1, x2) €0 x R" P : V and L satisfy

12) Lix, u")+VV(x)-X(x,u*)=0

(13) L(x,u)+VV(x) - X(x, u)=0.

Then, the system (6) is p-partially locally rationally stabilizable, and
(14) J(x(0), u™) = V(x(0)).

Furthermore the feedback control u* minimizes J in the sense that

(15) J(x(0), u*) = min J(x(0), w).
uel’(x(0))
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@ Sufficient conditions for polynomial stabilization by optimal
control

(b) for every x = (x1, x2) €0 x R" P : V and L satisfy

(12) Lix, u")+VV(x)-X(x,u*)=0

(13) L(x,u)+VV(x) - X(x, u)=0.

Then, the system (6) is p-partially locally rationally stabilizable, and
(14) J(x(0), u™) = V(x(0)).

Furthermore the feedback control u* minimizes J in the sense that

(15) J(x(0), u*) = min J(x(0), w).
uel’(x(0))

u* = argminger yon L, W) +VV(x) - X(x, ).



m Polynomial stabilization by optimal control

9

9 Application to systems with drift in Vorotnikov sense

9
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@ Application to systems with drift in Vorotnikov sense

(16) {561 = A+G(Xu

f2(x) + G2 (x) u,

where x = (x1, x2) €eRP xR""P, ueR™, f =(fi, fo) defined on R” x R"~P
and G = (G, G) : RP x R"™P — RP*(n=p)xm

X2
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@ Application to systems with drift in Vorotnikov sense

(16) 1= A@+GX)u

f2(x) + G2 (x) u,
where x = (x1, X2) €R? x R"™P, ueR™, f=(f, f>) defined on RP x R"~P
and G = (G, G) : RP x R"™P — RP*(n=p)xm

X

+00

17) J(x(0), w) =f L(x, u(r)) dt.
0

(18) Lix,u)=Li(x)+ L(x)u+u’ Ru,
where R:R™ — R™*™ is positive definite matrix-valued function.

A(x(0)) := {u: u is admissible, x(£) = (x1 (1), x2(1))

solution of (16) and |x;(#)] < t%}.

20



@ Application to systems with drift in Vorotnikov sense

Proposition

Consider the system with drift (16) with cost functional (17). We assume that
there exist a ¢! - function V : R”? x R"~” — R and some positive constants
c1, ¢, 11, T2, '3, ¢, @ such that

(a) for every x € R",

(19) calal" <V <elxl?,

20) LyV(x)- %LGV(x) R'Ly(x) - %LgV(x) R (LgV()' = —cvet!

(b)

(21) L,(0,x2) =0, V xp e R"P

21



@ Application to systems with drift in Vorotnikov sense

(22) Ly () + LV () = T [LV(0) + La(0)] - RV [LaV (x0) + La (0] T = 0.

Then the system (16) is p-partially rationally stable with Vorotnikov sense
under the optimal feedback

* 1 =1l T
(23) u :=—ER [La(x) + LV (x)]".

In addition, #* minimizes the cost functional J in the sense that

(24) J(x(0), u*) = rn(lr(l0 J(x(0), w),
and
(25) J(x(0), u*) = V(x(0)).

22



m Polynomial stabilization by optimal control

9
Q

e Example
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@ Example

The model of spacecraft with two axis :

Li)l = a1
(26) Wy = ajUp
w3 = @3Ul+aguy,

where

> x=(w;){_;_5 € R is the state and denote the components of the
angular velocity vector with respect to a given inertial reference frame

expressed in a central body reference frame,

> uj, up are the spacecraft control moments,

24
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0 16
p 2k *
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(x) 1+ p) lx1|» p, Kels,

) 2k

—za1lxl?
. 2k

—71a1lxl7 w,

28) { uy (x)

u, (x)



@ Example

Tl kg *
(27) J(x(0), u):f _a1|x1| P » Py keR ’
0 16
p 2k 4o *
Vix)=———1Ix1l7 ", p, keR].
(x) 4(k+p)| 1l p +
') Loy Lyl ?
ul(x) = —-salxlr o
28) i [11 1 1M 1
u,(x) = —zailxl? w,
c
(29) lw; ()] < \/,,_1, i=12,
t2x

if p > 2 k, then the solutions w;(t), i = 1, 2 are Lebesgue-integrable, then the

state w3 (f) converges.
25



@ Inverse optimal control
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O Inverse optimal control

e Problem:
Given a control system,
x=f(x w),

a specific feedback law control u* stabilizes this system, with respect to a

positive definite radially unbounded Lyapunov function V.
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0 Inverse optimal control

e Problem:
Given a control system,
x=f(x w),

a specific feedback law control u* stabilizes this system, with respect to a
positive definite radially unbounded Lyapunov function V.

° Gﬂl:

to find a Lagrangian function L for which this control u* is optimal in

integral cost sense.

27



9 Inverse optimal control

1. Freeman et Kokotovic :96 Optimalité inverse pour la stabilisation

robuste.
2. Tsiotras :99 Optimalité inverse pour la stabilisation d’un satellite.

3. Edouard et al :2014 Probléme de contrble optimal inverse avec une

optimisation polynomiale.

4. Haddad :2014, LAfflitto al :2015, 2016 Stabilisation asymptotique
(respectivement en temps fini) par rapport a une partie du systeme

par un controle optimal inverse...
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@ Inverse optimal control

Proposition

Consider the system with drift (16) subject to cost functional (17). We
assume that there exist a ¥'— function V and some positive constants
c1, C, 11, T2, 13 ¢, @ such that the set of conditions hold

(a)

clxI" = V(x) <colxl™?,
for every x € R"
1 1,7 1 -1 T a+l
LeVi(x) - 3 LcV(X)R "L, (x) - ELGV(JC)R LgV(x) ==cV™" (x)

(b)
L>(0, x2) =0, Vxp e R" P

then under the feedback

29



@ Inverse optimal control

* 1 -1 T
u ::_ER AL2(X)+ L V(017

the closed loop system (16) is partially rationally stable in Vorotnikov sense.

Furthermore u* is optimal with respect the cost functional (17), where
L) =u*T(Ru*(x)- LV (x)

i.e. J is minimized in the sense (24) and (25).

30



6 Example

The model of spacecraft with one axe of symmetry :

d)l = Dywrws+uy
(30) wy = —-Dhywswi+u
w3 = azui+agly,

> x:=(wi){_;4 € R is the state and denote the components of the

angular velocity vector with respect to a given inertial reference.
> uj, Uy are the spacecraft control moments.

> a3, as €R.

L—-1I3
I

spacecraft suchthat0< I; = I, < I.

> I3 = , I, I, and I3 are the principal moments of inertia of the

31



@ Example

BD

V(x)=

p
2(p+

k)

2k
=242
|x1|l7 ’ p)kERi.
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@ Example

B

(32)

V(x)=

_P
2(p+k)

2k
Zk o
[xq] 7 ,p,kERi.

I 1,2 2%
23 W2 W3 — 5 (W] +W5) P W)

-1 12 4 m2)s
23 W3 W1 — 5 (W] +W5) P W2,

32



@ Example

p 2k 1o *
31 Vix)=———Ix117 ', p, keR.
(31) (x) 2(p+k)| 1l p +
k
32) uf = bLiwow —%(w%+w§)n(;)1
u, = —Iggwgwl—%(aﬁ-kw%)?wg,
c .
|wi(t)|~+oo_py l:1,2,
L2k

p >max(1, 2 k), w3 converge.
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@ Example

p 2k 1o *
31 V(ix)= x1l7 ', p, keR.
31) @=sophal” " pkeR:
32) uj = Lywrws— 1 (w1+w2)l’w1
u; = _123(1)3(1)1—2(0)1-}-(1)2)7’(1)2,
c .
|wi(t)|~+oo_py l:1,2,
£2%

p >max(1, 2 k), w3 converge.

L) = u* T R u* ()= V' (%) f(x) = (Iog wp w3)? + (I3 03 01)? +5 L a2,

+00o
J(x(0), w) =[ L(x, u(t))ds.
0
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Thank you for your attention




