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Motivation

Motivation

e In 1995, Cox-Zuazua studied the energy of the solution of the wave
equation

{ p?(x)0%u(x,t) — O%u(x,t) = in ]0, 1[x]0, +o0]
u(x,0) = up(x) 8,14( O) (x), Vx € [0,1]

under the damping condition

Bau(1,1) + du(1,1) = 0 Vr €]0, +o00.
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Motivation

Motivation

e In 1995, Cox-Zuazua studied the energy of the solution of the wave
equation

{ 0% (x)0u(x, 1) — O2u(x,t) = in ]0, 1[x]0, +o0]
u(x,0) = up(x) 8,14( 0) (x), Vx € [0,1]

under the damping condition
Ou(1,1) + Ou(l,1t) =0 Vr €]0, +o0|.

o If the density p is suitably chosen, the dissipation of the energy
through the right bound is sufficient to lead to exponential decay of
solution.
¢ In the case of the density equal to one and no damping applied, i.e.,
when

u(1,t) = u(0,1) =0 Vr €]0, 00|,

then the energy of solutions is conserved.
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Motivation

Question : How the stability properties are effected if we couple the
exponentially stable wave equations to the conservative one ? J
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e The functions u; and u, denote, respectively, the transverse
displacement of a string of unit length in the case the density p* # 1

and p = 1.
020%uy (x, 1) — Ouy (x,1) + Qua(x, 1) = 0, in 0, 1[x]0, +oo]
OPus (x, 1) — O*uy(x,t) — Oy (x,t) = 0, in]0, 1[x]0, +oo|

X
u1(0,1) =0 Vit €]0, +o00]
u(0,1) = up(1,6) =0 vt €]0, +
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displacement of a string of unit length in the case the density p* # 1

and p = 1.
020%uy (x, 1) — Ouy (x,1) + Qua(x, 1) = 0, in 0, 1[x]0, +oo]
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Problem

e The functions u; and u, denote, respectively, the transverse
displacement of a string of unit length in the case the density p* # 1

and p = 1.
020%uy (x, 1) — Ouy (x,1) + Qua(x, 1) = 0, in 0, 1[x]0, +oo]
8?”2()6; t) 76)%”2()‘77 t) *atul(xa t) =0, in ]0,1[X]07 +OO[ 2.1)
u1(0,1) =0 Vit €]0, +o00] '
u(0,1) = up(1,6) =0 Vit €]0, +00]

with the following initial conditions
i (x,0) = uj (x), Gui(x,0) = uj(x), uz(x,0) = u3(x), dua(x,0) = uy(x)
and the boundary dissipation law

A (1,1) + Ou (1,1) =0 Vr €]0, +oo]. (2.2)
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o Let us set
H)(0,1) = {y € H'(0,1) : y(0) = 0} .
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H=H}(0,1) x L*(0,1) x H}(0,1) x L*(0, 1)
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o Let us set
H)(0,1) = {y € H'(0,1) : y(0) = 0} .

o Define the energy space H
H=H}(0,1) x L*(0,1) x H}(0,1) x L*(0, 1)
equipped with the inner product defined by
1
(U, U\ = / (u'uy + PPV + ¥y + 2z1)dx,
0

VU = (u,v,y,2), Ui = (u1,vi,y1,21) € H.
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e Let (uy,us) be a regular solution of system (2.1)-(2.2), its associated
total energy is defined by

1 1
E(r) = 5/0 (|8xu1(x, t)|2 4 p2|8,u1(x, t)‘z + |Oeutn (x, t)|2 + |Oiun (x, t)|2) dx
Vvt > 0.

(2.3)
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total energy is defined by

1 1
E(t) = 5 /0 (|<9xu1 ()C, t)|2 + p2|8tu1 (X, t)‘z + |axu2(x7 t)|2 + |atu2(x7 t)|2) dx
vt > 0.
(2.3)

e We have the dissipation law

dE(t
B — a1,
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e Let (uy,us) be a regular solution of system (2.1)-(2.2), its associated
total energy is defined by

1 1
E(t) = 5/ (10521 (e, ) + p? |9t (x, 1) 4+ |Bsaa (x, 1) + [Byuaz (x, 1)) dlx
0
vt > 0.
(2.3)
e We have the dissipation law
dE(t
B — a1,

Hence, system (2.1)-(2.2) is dissipative in the sense that its
associated energy is non increasing with respect to time.
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Question 2 : When the energy approach to zero, how fast its decay

Question 1 : Does the energy decreases to zero ?
is, and under what conditions ? |
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e Well-posedness and strong stability
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Well-posedness

o Let U = (uy, dur,u, Our)" . Then the system (2.1)-(2.2) can be
rewritten as an evolutionary equation in H

oU=AU(t), t>0
{ S o

where Uy = (Y, u},ud,u})’ € H is given.
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Well-posedness and strong stability

D(A) =

Well-posedness

o Let U = (uy, dur,u, Our)" . Then the system (2.1)-(2.2) can be
rewritten as an evolutionary equation in H

oU=AU(t), t>0
{ S o

where Uy = (Y, u},ud,u})’ € H is given.
e A:D(A) — H is defined by :
{(u,v,,2) € (H*(0,1) N HL(0,1)) x HL(0,1) x (H?(0,1) N Hy(0,1)) x Hy(0, 1
u'(1) +v(1) =0}

with

1 1 '
A(u,v,y,z)l = <V7p2AM pzz»ZaA)’+V> ) VU= (uvvayvz)t GD(A)
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The operator A is m-dissipative in the energy space H. In addition, the
linear bounded operator A~! is compact in H.
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Co-semigroup of contraction (e”),>o on H.
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Co-semigroup of contraction (e”),>o on H.

Theorem (Existence and unigueness)
(1) If Uy € D(A), then system (3.4) has a unique strong solution

U € C([0, +oo[,D(A)) N C' ([0, +oo[, H)
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Proposition

The operator A is m-dissipative in the energy space H. In addition, the
linear bounded operator A~! is compact in H.

e Using Lumer-Phillips Theorem, the operator A generates a
Co-semigroup of contraction (e”),>o on H.

Theorem (Existence and unigueness)
(1) If Uy € D(A), then system (3.4) has a unique strong solution

U € C([0, +oo[,D(A)) N C' ([0, +oo[, H)

(2) If Uy € H, then system (3.4) has a unique weak solution

U € C([0, +ool, H).
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Well-posedness and strong stability

Strong stability

e A generates a contraction semigroup and its resolvent is compact in

H, using Arendt-Batty theorem, system (2.1)-(2.2) is strongly stable,
i.e,
llIIl ||e UO||X =0 VUyeH

——+

if and only if A does not have pure imaginary eigenvalues.
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Well-posedness and strong stability

Strong stability

e A generates a contraction semigroup and its resolvent is compact in

H, using Arendt-Batty theorem, system (2.1)-(2.2) is strongly stable,
i.e,
hm ||e Uo||x =0 VUyeH

——+

if and only if A does not have pure imaginary eigenvalues.

theorem (Strong Stability)

The semigroup of contraction (e”),>¢ is strongly stable on the energy
space H if and only if the coefficient p satisfies the following condition

(o BHERE BT DY 5 KB+i3
kikym? K3i2n?

+1 7& OV(kl,kz) ek,
(3.5)

where K = {(kl,kz) € (N*)z;kl >k +lork; <k, — 1}

v
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Well-posedness and strong stability

Let D be the set of solutions of

o (2 k) K+ =D\ » k+k
k%k%ﬂ'z k%k%ﬂ'z

then the condition (3.5) is equivalent to p* ¢ D.
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Remark
Let D be the set of solutions of

o (2 k) K+ =D\ » k+k
k%k%ﬂ'z k%k%ﬂ'z

then the condition (3.5) is equivalent to p* ¢ D.
Moreover, D is a countable closed set which implies that the strong
stability is true for almost any value of p*.
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Well-posedness and strong stability

Remark
Let D be the set of solutions of

o (2 k) K+ =D\ » k+k
k%k%ﬂ'z k%k%ﬂ'z

then the condition (3.5) is equivalent to p* ¢ D.
Moreover, D is a countable closed set which implies that the strong
stability is true for almost any value of p*.
In addition,
DNQ=0. (3.6)
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e Exponential stability (Case : p = 1)
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Exponential stability (Case :p = 1)

Assume that p = 1, then the semigroup ¢* is exponentially stable, i.e.,
there exist a constant M > 0, and w > 0 such that

|e“Us|| < Me™"||Uo|| V> 0,Uy € D(A). 4.7)
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e Using Huang and Pruss, inequality (4.7) holds if and only if the
following two conditions are satisfied :
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Exponential stability (Case :p = 1)

Assume that p = 1, then the semigroup ¢* is exponentially stable, i.e.,
there exist a constant M > 0, and w > 0 such that

|e“Us|| < Me™"||Uo|| V> 0,Uy € D(A). 4.7)

e Using Huang and Pruss, inequality (4.7) holds if and only if the
following two conditions are satisfied :

(H1) iR C p(4),

(H2)  limsup [|GM —A)7!| < +oo.
|A|= 400, \ER
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Exponential stability (Case : p = 1)

Spectral Theory

In the case p = 1, there exists N € N such that

{t = ez, >n C 0(A) (4.8)

where

1
Hie = Eln(COS(l)) +ikm +o(1) k€ Z", [kl =N




15/39

Exponential stability (Case : p = 1)

e Graphical interpretation of the exponential stability of the system.

FIGURE: Spectrum of A. Case : p = 1.
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Exponential stability (Case : p = 1)

e Let X be an eigenvalue of A with associated eigenvector
U= (u,v,y,2).
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e Let X be an eigenvalue of A with associated eigenvector
U= (u,v,y,2).
oAU = AU is equivalent to

////_ )\zy//+>\2(1+/\2)y

(1) = ")+ A1) =
SO &
y(1) =y(0)=0
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Exponential stability (Case : p = 1)

e Let X be an eigenvalue of A with associated eigenvector
U= (u,v,y,2).
oAU = AU is equivalent to

//// _ )\zy// +>\2(1 _|_/\2)y

(1) = 5" (1) + X/ (1) =
POl “9
y(1) =y(0) =0

o)\ is an eigenvalue of A if and only if (4.9) admits a non trivial
solution.
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e The solution of (4.9) is given by :

4
y(x) =) Ciet
i=1

where
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Exponential stability (Case : p = 1)

e The solution of (4.9) is given by :

4
x) = Z Cie"iVx
i=1

where

1(A) = VA2 +iA,

n(A) = —tl(A),

B(A) = VAT =),
ts(N) = —t3(A).

e The boundary conditions may be written as the following system :

>

1 1 1 1 i 0

_ e’ % e e o | | O

MK 2 3 2 2 o || o
/’l)\<l‘1)€tl h)\(tz)efz /’l)\<l‘3)€t3 h)\(t4)ef4 C4 0

where (1) = 2 + +* — At.
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Exponential stability (Case : p = 1)

o)\ is an eigenvalue of A if and only if X is a zero of

det(M(X)) = 2Xsinh(#) sinh (#3) +#; cosh(#) sinh (#3) +#3 cosh(z3) sinh (#;).
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¢ The asymptotic development of <, det(M())), is given by
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where
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Exponential stability (Case : p = 1)

o)\ is an eigenvalue of A if and only if X is a zero of
det(M(X)) = 2Xsinh(#) sinh (#3) +#; cosh(#) sinh (#3) +#3 cosh(z3) sinh (#;).
¢ The asymptotic development of <, det(M())), is given by

) AN

F0 =/ + 12 1 o

)\2)7

+0(

where
fo(A) = =21 et ™h 4 B,

fiX) =i B — el Th,
e Using the expansion of ¢, and #; :

i 1
ll(>\) —)\+§+O(X

5() = A- 1 +0(3),

) (4.10)
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Exponential stability (Case : p = 1)

e The roots of f(A)

1
u = 3 In(cos (1)) + ikm + o(1), k € Z large enough.
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Exponential stability (Case : p = 1)

e The roots of f(A)
1
u = 3 In(cos (1)) + ikm + o(1), k € Z large enough.

e Using the Rouché’s theorem, and for X large enough, the roots of f
are close to those of fj.
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Exponential stability (Case : p = 1)

e The roots of f(A)
1
u = 3 In(cos (1)) + ikm + o(1), k € Z large enough.

e Using the Rouché’s theorem, and for X large enough, the roots of f
are close to those of fj.

In order to obtain the best decay rate equal to the spectral abscissa

% In(cos (1))

we need to prove that the generalized eigenvectors associated to
form a Riesz basis of the energy space.
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Exponential stability (Case : p = 1)

Condition (H2) :

e Contradiction argument : Suppose that there exists a sequence
(M)n C R and a sequence (U"), = (u",v",y",7"), C D(A) verifying the
following conditions
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Condition (H2) :

e Contradiction argument : Suppose that there exists a sequence
(M)n C R and a sequence (U"), = (u",v",y",7"), C D(A) verifying the
following conditions
[Aa| — 400, (4.11)
Ul = 1, (4.12)
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Exponential stability (Case : p = 1)

Condition (H2) :

e Contradiction argument : Suppose that there exists a sequence
(M)n C R and a sequence (U"), = (u",v",y",7"), C D(A) verifying the
following conditions

Au| — 400, (4.11)
Ul = 1, (4.12)
(iIMd — A) (" V'Y ) = (F1f 0 f) — 0in H. (4.13)

Our goal is to prove that ||U"||z = o(1). This contradicts equation
(4.12) .
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Exponential stability (Case : p = 1)

Step1 : (dissipation)
e Since (U"), is uniformly bounded in H, and using the dissipation
condition
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Exponential stability (Case : p = 1)

Step1 : (dissipation)
e Since (U"), is uniformly bounded in H, and using the dissipation

condition
VI(1)]? = Re ((i\d — A)U", U™y, = o(1). (4.14)
Then
i (1)| = o(1). (4.15)
and .
" (1) = ofl) (4.16)
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Exponential stability (Case : p = 1)

Step 2 :(Multiplier Method)
we get
Y (O)F + [ () = [y'(D)* = o(1). (4.17)
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Step 2 :(Multiplier Method)
we get
Y (O)F + [ () = [y'(D)* = o(1). (4.17)

e Under the condition y'(1) = o(1), one has

y'(0) = o(1) and «'(0) = o(1).
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Exponential stability (Case : p = 1)

Step 2 :(Multiplier Method)
we get
Y (O)F + [ () = [y'(D)* = o(1). (4.17)

e Under the condition y'(1) = o(1), one has
¥y (0) =o(1) and «'(0) = o(1).

Therefore ||U"||x = o(1), which contradicts (4.12) .
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Exponential stability (Case : p = 1)

Step 3 :y'(1) = o(1).
eletY = (u,u/,y,y), then (4.13) is equivalent to :

Y = BY + G + \F, (4.18)
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Exponential stability (Case : p = 1)

Step 3 :y'(1) = o(1).

eletY = (u,u/,y,y), then (4.13) is equivalent to :

Y = BY + G + \F, (4.18)
where
0 1 0 0
I S R B | A
—ix 0 =)\ —if3
0
G= (Gj) - _fzo_f3
—fa+fi
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Exponential stability (Case : p = 1)

e The solution of the equation (4.18) is given by :

Y(x) = ePYy + / Be—2G(z)dz + / AP F(7)dy (4.20)
0 0

where Y, = (u(0), 2/ (0), y(0),y'(0)) = (0,4'(0), 0, (0))".
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0 0
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e |t easy to check that
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and
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where Yy = (u(0),u'(0),y(0),y'(0))" = (0,4'(0),0,y (0))".
e |t easy to check that
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0
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0

Y(1) = eBYo+0(§).

and

e Whenx =1,
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Exponential stability (Case : p = 1)

e The solution of the equation (4.18) is given by :
Y(x) = ePYy + / Be—2G(z)dz + / AP F(7)dy (4.20)
0 0

where Yy = (u(0),u'(0),y(0),y'(0))" = (0,4'(0),0,y (0))".
e |t easy to check that

/X LG (z)dz = o(1).
0

/ APCTIF(2)dz = o(1).
0

Y(1) = eBYo+0(§).

and

e Whenx =1,

e This is equivalent to

Yo = e BY(1) 4+ o(1).
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Exponential stability (Case : p = 1)

o We obtain the following equations

u'(0) = isin()\) sin(%)y’(l) +o(1) (4.21)
¥ (0) = cos(\) cos(%)y'(l) +o(1). (4.22)
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(cos(%)cosz()\) —sin?(\) siHZ(%) — DY (D) =o(1),
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Exponential stability (Case : p = 1)

o We obtain the following equations

u'(0) = isin()\) sin(%)y’(l) +o(1) (4.21)
¥ (0) = cos(\) cos(%)y'(l) +o(1). (4.22)

o Using [y'(0)|* + |« (0)* — |y'(1)|* = o(1), we get
(cos(%) cos?(\) — sin?(\) siHZ(%) — DY (D) =o(1),
which is equivalent

(cosz()\)(cosz(;) — 1) +sin®*(A\) (=1 — sinz(;))) Iy (1)]* = o(1).
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Exponential stability (Case : p = 1)

o We obtain the following equations

u'(0) = isin()\) sin(%)y’(l) +o(1) (4.21)
¥ (0) = cos(\) cos(%)y'(l) +o(1). (4.22)

o Using [y'(0)|* + |« (0)* — |y'(1)|* = o(1), we get
(cos(%) cos?(\) — sin?(\) siHZ(%) — DY (D) =o(1),
which is equivalent

(cos%A)(cosZ(;) 1)+ sin(A)(—1 — sin2<;>>) Y (P = o(1).
e Since
cos? (W)(1 — cos’(3)) + it () (1 +sin%(3)) > (1~ cos’(3)) (cos’ (A) + sin*(Y)
>1 fcosz(%),

(4.23)
we deduce that [y'(1)] = o(1).
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e Polynomial stability (Case : p # 1)
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Polynomial stability (Case : p # 1)

Polynomial stability (Case : p # 1)

Theorem

Assume that p # 1. If p € Q, then there exists a constant C > 0 such
that for every initial data Uy € D(A), the energy of system (2.1)-(2.2)
verifies the following estimate :

1 2
E(t) < C$||Uo||D(A), vt > 0. (5.24)

v
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Using Borichev, Tomilov theorem a Cy-semigroup of contractions e
in a Hilbert space H satisfies (5.24) if and only if
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Polynomial stability (Case : p # 1)

Polynomial stability (Case : p # 1)

Theorem

Assume that p # 1. If p € Q, then there exists a constant C > 0 such
that for every initial data Uy € D(A), the energy of system (2.1)-(2.2)
verifies the following estimate :

1 2
E(r) < C$||Uo||D(A), vt > 0. (5.24)

v

Using Borichev, Tomilov theorem a Cy-semigroup of contractions e
in a Hilbert space H satisfies (5.24) if and only if
(H1) iR C p(A),
and
(H2)  limsup i ||GM —A)7!| < +oo.

A
|)\‘~>+OO,)\€]R| |
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Polynomial stability (Case : p # 1)

Spectral Theory

Proposition
Assume that p > 1 . There exists N € N* such that

{Mreze kzv U {ttkez, k>n C (A)
where
M = ikm +o(1),k € Z*, k| > N,

—1 1 Tk
—— (”* )++o< )k EZ,K >N
20 \p—1 p

Moreover for all |k| > N, the eigenvalues )\, and ; are simple.

(5.25)
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e Graphical interpretation of the polynomial stability of the system

FIGURE: Spectrum of A. Case : p = 2.
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e Let X be an eigenvalue of A with associated eigenvector
U= (u,v,y,2).
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e Let X be an eigenvalue of A with associated eigenvector
U= (u,v,y,2).
oAU = AU is equivalent to

y//// _ /\2(1 +p2)y// +)\2(1 +)\2p2)y: 0

—v"(1 _i///l _’_)\/1 =0

y”y(o() ): 0 3" (1) y'(1) (5.26)
y(1) = ¥(0) = 0.
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e Let X be an eigenvalue of A with associated eigenvector
U= (u,v,y,2).
oAU = AU is equivalent to

y//// _ /\2(1 +p2)y// + )\2(1 + )\2p2)y =0

);’y(/(/)()l):_() " (D + (1) =0 (5.26)
y(1) = y(0) = 0.

o)\ is an eigenvalue of A if and only if there is a non trivial solution of
(5.26) which satisfies the boundary conditions.
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e The general solution of (5.26) is given by

4
x) = Z Cie'i M)
=

where

A2(1+ +>n/>\21— =
) = —n(\)

\/)\2 (1= %) — 4

2 , (X)) = —13(A).



31/39
Polynomial stability (Case : p # 1)

e The boundary conditions may be written as the following system :

1 1 1 1 C1 0

e’ e eh e’ | |0

L1 7 B 3 3 s | O
h)\(tl)ef' /’l,\(l‘g)el2 h>\(t3)e’3 /’l,\(l‘z;)el4 C4 0

where hy (1) = 2 + 115 — \.
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e The boundary conditions may be written as the following system :

1 1 1 1 ci 0

el] efz et3 et“ (&) 0

LIRS 7 B 3 3 s | O
h)\(tl)ef' /’l,\(l‘g)el2 h>\(t3)e’3 /’l,\(l‘z;)el4 C4 0

where (1) = 2 + 12 — A1,
e A non trivial solution y exists if and only if the determinant of M(\)
vanishes.
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e The boundary conditions may be written as the following system :

1 1 1 1 ci 0

el] efz et3 et“ (&) 0

L1 7 B 3 3 s | O
h)\(tl)ef' /’l,\(l‘g)el2 h>\(t3)e’3 /’l,\(l‘z;)el4 C4 0

where (1) = 2 + 12 — A1,

e A non trivial solution y exists if and only if the determinant of M(\)
vanishes.

e Let f(\) = dertM()), thus the characteristic equation

) =o0.
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e As we did before, using the asymptotic expansions of #; and #; and
multipling the third and the fourth line of M(\) by % we obtain the
following asymptotic development

FO) =N + =
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A A 1
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e Using the Rouché’s theorem, and for A large enough, the roots of f
are close to those of f, where
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e As we did before, using the asymptotic expansions of #; and #; and
multipling the third and the fourth line of M(\) by % we obtain the
following asymptotic development

aN) AW 1

FO) =N + vt a +O(F)'

e Using the Rouché’s theorem, and for A large enough, the roots of f
are close to those of f, where

FoN) = (0= 12(p+ 1215 (1 — ™) (p+ 1+ (p— 1)e™).
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of has two families of roots that we denote \? and 1.9.
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Polynomial stability (Case : p # 1)

of has two families of roots that we denote \? and 1.9.

First case :
e = | = 2t; = 2ikm, ke Z.

Since 13 ~ A\, we get the first family of roots of f; is

N ~ikm +o(1), k € Z large enough.

Second case : e 2 = z—f} then

1
2 =1In <1) + ikm, k€ Z.

The second family of roots of f; is

1 p+1 km
0 .
k 2pn(p—1> lp o(l),
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Conclusion :
e There exists a sequence (\,), of roots of f such that

A = ikm 4+ o(1) as k — +oo0.
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Conclusion :
e There exists a sequence (\,), of roots of f such that

A = ikm 4+ o(1) as k — +oo0.

In order to obtain the optimal energy decay rate we should investigate
the asymptotic behavior for the first family of eigenvalues near the
imaginary axis.
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Polynomial stability (Case : p # 1)

Condition (H2)

e Using again an argument of contradiction : there exists a sequence
(M)n C R and a sequence (U"), = (u",v",y",7"), C D(A) verifying the
following conditions
[An| — +00,
1U"la =1,

NG — A) (V" ) = (FL AL AL ) — 0in H.

(5.27)
(5.28)
(5.29)



35/39

Polynomial stability (Case : p # 1)

Condition (H2)

e Using again an argument of contradiction : there exists a sequence

(M)n C R and a sequence (U"), = (u",v",y",7"), C D(A) verifying the
following conditions

[An| — +00,

U™l = 1, (5.28)

NG — A) (V" ) = (FL AL AL ) — 0in H. (5.29)

e Our aim is to prove that ||U"||z = o(1). This contradicts equation
(5.28).

(5.27)
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o We follow the same steps as before, it consists to prove that

(1) = o(1). (5.30)
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e If this is not true, then there exists a constant ¢ such that
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Polynomial stability (Case : p # 1)

o We follow the same steps as before, it consists to prove that
y(1) = o(1). (5.30)

o To simplify the computation we translate the problem and we prove
that
v:(0) = o(1).

e If this is not true, then there exists a constant ¢ such that
vi(0) >¢, VneN.

¢ (5.29) can be written as

U =BU+F
where
u 0 1 0 0 0
212 g
| u | =Pt 0 X 0 | f
U= y ,B= 0 0o 0 1 and F = 0
Yy —ix 0 =X 0 g
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e Then a straightforward computation gives that

e sin()\—m)y’(o)

+
>

(5.31)

y = sin(Ap— m)yl(o) + 57
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e Then a straightforward computation gives that

u = sin(\— m)y’(O) + ";ﬁ),
(5.31)
y = sin(Ap — schy)y/(0) + %

e Applying the boundary conditions u(1) = y(1) = 0, and using the
fact that y'(0) > ¢, it follows that there exist m, k € Z with the same
parity such that
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e Then a straightforward computation gives that

u = sin(\— m)y’(O) + ";ﬁ),
(5.31)
y = sin(Ap — schy)y/(0) + %

e Applying the boundary conditions u(1) = y(1) = 0, and using the
fact that y'(0) > ¢, it follows that there exist m, k € Z with the same
parity such that

1 _ o(l)
A= mxprmn = MT+ S

(5.32)
_ ()
Ap — 2)\p(;271) = km + &2
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e Applying the boundary conditions u(1) = y(1) = 0, and using the
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e Then a straightforward computation gives that

u = sin(A— m)y’(O) + "iﬁ),
(5.31)
y o= sin(h = soie)y(0) + 42

e Applying the boundary conditions u(1) = y(1) = 0, and using the
fact that y'(0) > ¢, it follows that there exist m, k € Z with the same
parity such that

1 _ o(l)
A= mxprmn = MT+ S

(5.32)
_ ()
Ap — 2)\p(;271) = km + &2

e Using the fact the X is large enough, A ~ m ~ k, then (5.32) can be

written as
/\2:m27r2+ﬁ+@,
(5.33)

AZpZ = k27.‘.2 — m + 0(1)
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o Finally, we get

3
2 2 12 p+1
pm_k = ——— o(1).

mp(p* — 1) M
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o Finally, we get

p+1

2 72 2
pm—k=————
mp(p* — 1)

+o(1).

_ __p+l
eletc= e

e Since we have assumed that p = ’5’ for some (p, q) € N*, we deduce

pm—kq ¢ o(1)
g  pm+kqg pm+kq

i) If pm — gk = 0 for an infinity number of pairs (m, k), then ¢ = o(1)
and this a contradiction.
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o Finally, we get
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o Finally, we get

p+1

2 72 2
pm—k=————
mp(p* — 1)

+o(1).

_ __p+l
eletc= e

e Since we have assumed that p = ’5’ for some (p, q) € N*, we deduce

pm—kq ¢ o(1)
g  pm+kqg pm+kq

i) If pm — gk = 0 for an infinity number of pairs (m, k), then ¢ = o(1)
and this a contradiction.
ii) Else pm — kn # 0 for )\ large enough and then

c I+ o(1)
pm + kg pm + kq

1
~<| | <o(1),
q

wich cannot be true.
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Thank you for your
attention J
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