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Motivation

Motivation

• In 1995, Cox-Zuazua studied the energy of the solution of the wave
equation{

ρ2(x)∂2
t u(x, t)− ∂2

x u(x, t) = 0, in ]0, 1[×]0,+∞[
u(x, 0) = u0(x) , ∂tu(x, 0) = v0(x), ∀x ∈ [0, 1]

under the damping condition

∂xu(1, t) + ∂tu(1, t) = 0 ∀t ∈]0,+∞[.

• If the density ρ is suitably chosen, the dissipation of the energy
through the right bound is sufficient to lead to exponential decay of
solution.
• In the case of the density equal to one and no damping applied, i.e.,
when

u(1, t) = u(0, t) = 0 ∀t ∈]0,+∞[,

then the energy of solutions is conserved.
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Motivation

Question : How the stability properties are effected if we couple the
exponentially stable wave equations to the conservative one ?
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Problem

Problem

• The functions u1 and u2 denote, respectively, the transverse
displacement of a string of unit length in the case the density ρ2 6= 1
and ρ = 1.

ρ2∂2
t u1(x, t)− ∂2

x u1(x, t) + ∂tu2(x, t) = 0, in ]0, 1[×]0,+∞[
∂2

t u2(x, t)− ∂2
x u2(x, t)− ∂tu1(x, t) = 0, in ]0, 1[×]0,+∞[

u1(0, t) = 0 ∀t ∈]0,+∞[
u2(0, t) = u2(1, t) = 0 ∀t ∈]0,+∞[

(2.1)

with the following initial conditions

u1(x, 0) = u0
1(x), ∂tu1(x, 0) = u1

1(x), u2(x, 0) = u0
2(x), ∂tu2(x, 0) = u1

2(x)

and the boundary dissipation law

∂xu1(1, t) + ∂tu1(1, t) = 0 ∀t ∈]0,+∞[. (2.2)



5 / 39

Problem

Problem

• The functions u1 and u2 denote, respectively, the transverse
displacement of a string of unit length in the case the density ρ2 6= 1
and ρ = 1.

ρ2∂2
t u1(x, t)− ∂2

x u1(x, t) + ∂tu2(x, t) = 0, in ]0, 1[×]0,+∞[
∂2

t u2(x, t)− ∂2
x u2(x, t)− ∂tu1(x, t) = 0, in ]0, 1[×]0,+∞[

u1(0, t) = 0 ∀t ∈]0,+∞[
u2(0, t) = u2(1, t) = 0 ∀t ∈]0,+∞[

(2.1)

with the following initial conditions

u1(x, 0) = u0
1(x), ∂tu1(x, 0) = u1

1(x), u2(x, 0) = u0
2(x), ∂tu2(x, 0) = u1

2(x)

and the boundary dissipation law

∂xu1(1, t) + ∂tu1(1, t) = 0 ∀t ∈]0,+∞[. (2.2)



5 / 39

Problem

Problem

• The functions u1 and u2 denote, respectively, the transverse
displacement of a string of unit length in the case the density ρ2 6= 1
and ρ = 1.

ρ2∂2
t u1(x, t)− ∂2

x u1(x, t) + ∂tu2(x, t) = 0, in ]0, 1[×]0,+∞[
∂2

t u2(x, t)− ∂2
x u2(x, t)− ∂tu1(x, t) = 0, in ]0, 1[×]0,+∞[

u1(0, t) = 0 ∀t ∈]0,+∞[
u2(0, t) = u2(1, t) = 0 ∀t ∈]0,+∞[

(2.1)

with the following initial conditions

u1(x, 0) = u0
1(x), ∂tu1(x, 0) = u1

1(x), u2(x, 0) = u0
2(x), ∂tu2(x, 0) = u1

2(x)

and the boundary dissipation law

∂xu1(1, t) + ∂tu1(1, t) = 0 ∀t ∈]0,+∞[. (2.2)



6 / 39

Problem

• Let us set
H1

L(0, 1) =
{

y ∈ H1(0, 1) : y(0) = 0
}
.

• Define the energy space H

H = H1
L(0, 1)× L2(0, 1)× H1

0(0, 1)× L2(0, 1)

equipped with the inner product defined by

(U,U1)H :=

∫ 1

0
(u′ū′1 + ρ2vv̄1 + y′ȳ′1 + zz̄1)dx,

∀U = (u, v, y, z),U1 = (u1, v1, y1, z1) ∈ H.
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Problem

• Let (u1, u2) be a regular solution of system (2.1)-(2.2), its associated
total energy is defined by

E(t) =
1
2

∫ 1

0

(
|∂xu1(x, t)|2 + ρ2|∂tu1(x, t)|2 + |∂xu2(x, t)|2 + |∂tu2(x, t)|2

)
dx

∀t > 0.
(2.3)

•We have the dissipation law

dE(t)
dt

= − |∂xu1(1, t)|2 .

Hence, system (2.1)-(2.2) is dissipative in the sense that its
associated energy is non increasing with respect to time.
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Problem

Question 1 : Does the energy decreases to zero ?
Question 2 : When the energy approach to zero, how fast its decay
is, and under what conditions ?
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Well-posedness and strong stability

Well-posedness

• Let U = (u1, ∂tu1, u2, ∂tu2)
t
. Then the system (2.1)-(2.2) can be

rewritten as an evolutionary equation in H{
∂tU = AU(t), t > 0
U(0) = U0

(3.4)

where U0 = (u0
1, u

1
1, u

0
2, u

1
2)t ∈ H is given.

• A : D(A) −→ H is defined by :

D(A) =
{

(u, v, y, z) ∈ (H2(0, 1) ∩ H1
L(0, 1))× H1

L(0, 1)× (H2(0, 1) ∩ H1
0(0, 1))× H1

0(0, 1),

u′(1) + v(1) = 0}

with

A (u, v, y, z)t
=

(
v,

1
ρ2 ∆u− 1

ρ2 z, z,∆y + v
)t

, ∀ U = (u, v, y, z)t ∈ D(A).
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Well-posedness and strong stability

Proposition

The operator A is m-dissipative in the energy space H. In addition, the
linear bounded operator A−1 is compact in H.

• Using Lumer-Phillips Theorem, the operator A generates a
C0-semigroup of contraction (etA)t≥0 on H.

Theorem (Existence and uniqueness)

(1) If U0 ∈ D(A), then system (3.4) has a unique strong solution

U ∈ C([0,+∞[,D(A)) ∩ C1([0,+∞[,H)

(2) If U0 ∈ H, then system (3.4) has a unique weak solution

U ∈ C([0,+∞[,H).
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Well-posedness and strong stability

Strong stability

• A generates a contraction semigroup and its resolvent is compact in
H, using Arendt-Batty theorem, system (2.1)-(2.2) is strongly stable,
i.e,

lim
t→+∞

||etAU0||X = 0 ∀U0 ∈ H

if and only if A does not have pure imaginary eigenvalues.

theorem (Strong Stability)

The semigroup of contraction (etA)t≥0 is strongly stable on the energy
space H if and only if the coefficient ρ satisfies the following condition

ρ4 +

(
2− (k2

1 + k2
2)((k2

1 + k2
2)π2 − 1)

k2
1k2

2π
2

)
ρ2 +

k2
1 + k2

2

k2
1k2

2π
2 +1 6= 0 ∀(k1, k2) ∈ K,

(3.5)
where K = {(k1, k2) ∈ (N∗)2; k1 ≥ k2 + 1or k1 ≤ k2 − 1}.
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Well-posedness and strong stability

Remark
Let D be the set of solutions of

ρ4 +

(
2− (k2

1 + k2
2)((k2

1 + k2
2)π2 − 1)

k2
1k2

2π
2

)
ρ2 +

k2
1 + k2

2

k2
1k2

2π
2 + 1 = 0

then the condition (3.5) is equivalent to ρ2 /∈ D.
Moreover, D is a countable closed set which implies that the strong
stability is true for almost any value of ρ2.
In addition,

D ∩Q = ∅. (3.6)
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Exponential stability (Case : ρ = 1)

Exponential stability (Case :ρ = 1)

Theorem

Assume that ρ = 1, then the semigroup etA is exponentially stable, i.e.,
there exist a constant M > 0, and ω > 0 such that∥∥etAU0

∥∥ ≤ Me−ωt ‖U0‖ ∀t > 0,U0 ∈ D(A). (4.7)

• Using Huang and Prüss, inequality (4.7) holds if and only if the
following two conditions are satisfied :

(H1) iR ⊂ ρ(A),
(H2) lim sup

|λ|→+∞,λ∈R
||(iλI − A)−1|| < +∞.
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Exponential stability (Case : ρ = 1)

Spectral Theory

Proposition

In the case ρ = 1, there exists N ∈ N such that

{µk}k∗∈Z,|k|≥N ⊂ σ(A) (4.8)

where
µk =

1
2

ln(cos (1)) + ikπ + o(1) , k ∈ Z∗, |k| ≥ N
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Exponential stability (Case : ρ = 1)

• Graphical interpretation of the exponential stability of the system.

FIGURE: Spectrum of A. Case : ρ = 1.
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Exponential stability (Case : ρ = 1)

• Let λ be an eigenvalue of A with associated eigenvector
U = (u, v, y, z).
•AU = λU is equivalent to


y′′′′ − 2λ2y′′ + λ2(1 + λ2)y = 0
−y′′(1)− 1

λy′′′(1) + λy′(1) = 0
y′′(0) = 0
y(1) = y(0) = 0

(4.9)

•λ is an eigenvalue of A if and only if (4.9) admits a non trivial
solution.
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Exponential stability (Case : ρ = 1)

• The solution of (4.9) is given by :

y(x) =

4∑
i=1

Cieti(λ)x

where
t1(λ) =

√
λ2 + iλ,

t2(λ) = −t1(λ),

t3(λ) =
√
λ2 − iλ,

t4(λ) = −t3(λ).

• The boundary conditions may be written as the following system :

M(λ)C(λ) =


1 1 1 1
et1 et2 et3 et4

t2
1 t2

2 t2
3 t2

4
hλ(t1)et1 hλ(t2)et2 hλ(t3)et3 hλ(t4)et4




c1
c2
c3
c4

 =


0
0
0
0


where hλ(t) = t2 + 1

λ t3 − λt.
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Exponential stability (Case : ρ = 1)

•λ is an eigenvalue of A if and only if λ is a zero of

det(M(λ)) = 2λ sinh(t1) sinh (t3)+t1 cosh(t1) sinh (t3)+t3 cosh(t3) sinh (t1).

• The asymptotic development of 1
λ2 det(M(λ)), is given by

f̃ (λ) = f0(λ) +
f1(λ)

λ
+ O(

1
λ2 ),

where
f0(λ) = −2et1+t3 + et1−t3 + et3−t1 ,

f1(λ) = iet1−t3 − iet3−t1 .

• Using the expansion of t1 and t3 :

t1(λ) = λ+
i
2

+ O(
1
λ

)

t3(λ) = λ− i
2

+ O(
1
λ

),

(4.10)
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Exponential stability (Case : ρ = 1)

• The roots of f0(λ)

µ0
k =

1
2

ln(cos (1)) + ikπ + o(1), k ∈ Z large enough.

• Using the Rouché’s theorem, and for λ large enough, the roots of f̃
are close to those of f0.

Remark
In order to obtain the best decay rate equal to the spectral abscissa

1
2

ln(cos (1))

we need to prove that the generalized eigenvectors associated to µk

form a Riesz basis of the energy space.
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Exponential stability (Case : ρ = 1)

Condition (H2) :

• Contradiction argument : Suppose that there exists a sequence
(λn)n ⊂ R and a sequence (Un)n = (un, vn, yn, zn)n ⊂ D(A) verifying the
following conditions

|λn| −→ +∞, (4.11)

||Un||H = 1, (4.12)

(iλnI − A)(un, vn, yn, zn) = (f n
1 , f

n
2 , f

n
3 , f

n
4 ) −→ 0 in H. (4.13)

Our goal is to prove that ||Un||H = o(1). This contradicts equation
(4.12) .
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Exponential stability (Case : ρ = 1)

Step1 : (dissipation)
• Since (Un)n is uniformly bounded in H, and using the dissipation
condition

|vn(1)|2 = Re 〈(iλnI − A)Un,Un〉X = o(1). (4.14)

Then
|un

x(1)| = o(1). (4.15)

and
|un(1)| = o(1)

λn
. (4.16)
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Exponential stability (Case : ρ = 1)

Step 2 :(Multiplier Method)
we get

|y′(0)|2 + |u′(0)|2 − |y′(1)|2 = o(1). (4.17)

• Under the condition y′(1) = o(1), one has

y′(0) = o(1) and u′(0) = o(1).

Therefore ||Un||X = o(1), which contradicts (4.12) .
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Exponential stability (Case : ρ = 1)

Step 3 :y′(1) = o(1).
• Let Y = (u, u′, y, y′)t, then (4.13) is equivalent to :

Y ′ = BY + G + λF, (4.18)

where

B =


0 1 0 0
−λ2 0 iλ 0

0 0 0 1
−iλ 0 −λ2 0

 ,F = (Fj) =


0
−if1

0
−if3

 ,

G = (Gj) =


0

−f2 − f3
0

−f4 + f1

 .

(4.19)
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Exponential stability (Case : ρ = 1)

• The solution of the equation (4.18) is given by :

Y(x) = eBxY0 +

∫ x

0
eB(x−z)G(z)dz +

∫ x

0
λeB(x−z)F(z)dz (4.20)

where Y0 = (u(0), u′(0), y(0), y′(0))t = (0, u′(0), 0, y′(0))t.
• It easy to check that ∫ x

0
eB(x−z)G(z)dz = o(1).

and ∫ x

0
λeB(x−z)F(z)dz = o(1).

•When x = 1,

Y(1) = eBY0 + o(
1
λ

).

• This is equivalent to

Y0 = e−BY(1) + o(1).
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Exponential stability (Case : ρ = 1)

•We obtain the following equations

u′(0) = i sin(λ) sin(
1
2

)y′(1) + o(1) (4.21)

y′(0) = cos(λ) cos(
1
2

)y′(1) + o(1). (4.22)

• Using |y′(0)|2 + |u′(0)|2 − |y′(1)|2 = o(1), we get

(cos(
1
2

) cos2(λ)− sin2(λ) sin2(
1
2

)− 1)|y′(1)|2 = o(1),

which is equivalent(
cos2(λ)(cos2(

1
2

)− 1) + sin2(λ)(−1− sin2(
1
2

))

)
|y′(1)|2 = o(1).

• Since

cos2(λ)(1− cos2(
1
2

)) + sin2(λ)(1 + sin2(
1
2

)) ≥ (1− cos2(
1
2

))(cos2(λ) + sin2(λ))

≥ 1− cos2(
1
2

),

(4.23)
we deduce that |y′(1)| = o(1).
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Polynomial stability (Case : ρ 6= 1)

1 Motivation

2 Problem

3 Well-posedness and strong stability

4 Exponential stability (Case : ρ = 1)

5 Polynomial stability (Case : ρ 6= 1)
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Polynomial stability (Case : ρ 6= 1)

Polynomial stability (Case : ρ 6= 1)

Theorem
Assume that ρ 6= 1. If ρ ∈ Q, then there exists a constant C > 0 such
that for every initial data U0 ∈ D(A), the energy of system (2.1)-(2.2)
verifies the following estimate :

E(t) ≤ C
1√

t
||U0||2D(A), ∀t > 0. (5.24)

Using Borichev, Tomilov theorem a C0-semigroup of contractions etA

in a Hilbert space H satisfies (5.24) if and only if
(H1) iR ⊂ ρ(A),

and
(H2) lim sup

|λ|→+∞,λ∈R

1
|λ|4 ||(iλI − A)−1|| < +∞.
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Polynomial stability (Case : ρ 6= 1)

Spectral Theory

Proposition

Assume that ρ > 1 . There exists N ∈ N∗ such that

{λk}k∈Z∗,|k|≥N ∪ {µk}k∈Z,|k|≥N ⊂ σ(A) (5.25)

where

λk = ikπ + o(1), k ∈ Z∗, |k| ≥ N,

µk =
−1
2ρ

ln
(
ρ+ 1
ρ− 1

)
+ i

πk
ρ

+ o(1), k ∈ Z, |k| ≥ N

Moreover for all |k| ≥ N, the eigenvalues λk and µk are simple.
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Polynomial stability (Case : ρ 6= 1)

• Graphical interpretation of the polynomial stability of the system

FIGURE: Spectrum of A. Case : ρ = 2.



29 / 39

Polynomial stability (Case : ρ 6= 1)

• Let λ be an eigenvalue of A with associated eigenvector
U = (u, v, y, z).
•AU = λU is equivalent to

y′′′′ − λ2(1 + ρ2)y′′ + λ2(1 + λ2ρ2)y = 0
−y′′(1)− 1

λy′′′(1) + λy′(1) = 0
y′′(0) = 0
y(1) = y(0) = 0.

(5.26)

•λ is an eigenvalue of A if and only if there is a non trivial solution of
(5.26) which satisfies the boundary conditions.
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Polynomial stability (Case : ρ 6= 1)

• The general solution of (5.26) is given by

y(x) =

4∑
i=1

Cieti(λ)x

where

t1(λ) =

√
λ2(1 + ρ2) + λ

√
λ2(1− ρ2)2 − 4

2
, t2(λ) = −t1(λ)

t3(λ) =

√
λ2(1 + ρ2)− λ

√
λ2(1− ρ2)2 − 4

2
, t4(λ) = −t3(λ).
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Polynomial stability (Case : ρ 6= 1)

• The boundary conditions may be written as the following system :

M(λ)C(λ) =


1 1 1 1
et1 et2 et3 et4

t2
1 t2

2 t2
3 t2

4
hλ(t1)et1 hλ(t2)et2 hλ(t3)et3 hλ(t4)et4




c1
c2
c3
c4

 =


0
0
0
0


where hλ(t) = t2 + 1

λ t3 − λt.
• A non trivial solution y exists if and only if the determinant of M(λ)
vanishes.
• Let f (λ) = detM(λ), thus the characteristic equation

f (λ) = 0.
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Polynomial stability (Case : ρ 6= 1)

• As we did before, using the asymptotic expansions of t1 and t3 and
multipling the third and the fourth line of M(λ) by 1

λ2, we obtain the
following asymptotic development

f (λ) = f0(λ) +
f1(λ)

λ2 +
f2(λ)

λ4 + O(
1
λ4 ).

• Using the Rouché’s theorem, and for λ large enough, the roots of f
are close to those of f0 where

f0(λ) = (ρ− 1)2(ρ+ 1)2et1+t3(1− e−2t3)(ρ+ 1 + (ρ− 1)e−2t1).
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Polynomial stability (Case : ρ 6= 1)

•f0 has two families of roots that we denote λ0
k and µ0

k .
First case :

e−2t3 = 1 ⇐⇒ 2t3 = 2ikπ, k ∈ Z.

Since t3 ∼∞ λ, we get the first family of roots of f0 is

λ0
k ∼ ikπ + o(1), k ∈ Z large enough.

Second case : e−2t1 = ρ+1
ρ−1 , then

−2t1 = ln
(
ρ+ 1
ρ− 1

)
+ ikπ, k ∈ Z.

The second family of roots of f0 is

µ0
k = − 1

2ρ
ln
(
ρ+ 1
ρ− 1

)
+ i

kπ
ρ

+ o(1), k ∈ Z.
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Polynomial stability (Case : ρ 6= 1)

Conclusion :
• There exists a sequence (λn)n of roots of f such that

λk = ikπ + o(1) as k −→ +∞.

Remark
In order to obtain the optimal energy decay rate we should investigate
the asymptotic behavior for the first family of eigenvalues near the
imaginary axis.
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Polynomial stability (Case : ρ 6= 1)

Condition (H2)

• Using again an argument of contradiction : there exists a sequence
(λn)n ⊂ R and a sequence (Un)n = (un, vn, yn, zn)n ⊂ D(A) verifying the
following conditions

|λn| −→ +∞, (5.27)

||Un||H = 1, (5.28)

λ4
n(iλnI − A)(un, vn, yn, zn) = (f n

1 , f
n
2 , f

n
3 , f

n
4 ) −→ 0 in H. (5.29)

• Our aim is to prove that ||Un||H = o(1). This contradicts equation
(5.28).
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Polynomial stability (Case : ρ 6= 1)

•We follow the same steps as before, it consists to prove that

yx(1) = o(1). (5.30)

• To simplify the computation we translate the problem and we prove
that

yx(0) = o(1).

• If this is not true, then there exists a constant c such that

yn
x(0) ≥ c, ∀n ∈ N.

• (5.29) can be written as

U′ = BU + F

where

U =


u
ux

y
yx

 ,B =


0 1 0 0

−ρ2λ2 0 iλ 0
0 0 0 1
−iλ 0 −λ2 0

and F =


0
f
0
g

 .
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Polynomial stability (Case : ρ 6= 1)

• Then a straightforward computation gives that
u = sin(λ− 1

2λ(ρ2−1) )y′(0) + o(1)
λ3 ,

y = sin(λρ− 1
2λρ(ρ2−1) )y′(0) + o(1)

λ4 .

(5.31)

• Applying the boundary conditions u(1) = y(1) = 0, and using the
fact that y′(0) ≥ c, it follows that there exist m, k ∈ Z with the same
parity such that 

λ− 1
2λ(ρ2−1) = mπ + O(1)

λ2 ,

λρ− 1
2λρ(ρ2−1) = kπ + o(1)

λ .

(5.32)

• Using the fact the λ is large enough, λ ∼ m ∼ k, then (5.32) can be
written as 

λ2 = m2π2 + π
ρ2−1 + O(1)

λ ,

λ2ρ2 = k2π2 − π
ρ(ρ2−1) + o(1).

(5.33)
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Polynomial stability (Case : ρ 6= 1)

• Finally, we get

ρ2m2 − k2 = − ρ3 + 1
πρ(ρ2 − 1)

+ o(1).

• Let c = − ρ3+1
πρ(ρ2−1) .

• Since we have assumed that ρ = p
q for some (p, q) ∈ N∗, we deduce

pm− kq
q

=
c

pm + kq
+

o(1)

pm + kq
.

i) If pm− qk = 0 for an infinity number of pairs (m, k), then c = o(1)
and this a contradiction.
ii) Else pm− kn 6= 0 for λ large enough and then

1
q
≤ | c

pm + kq
|+ | o(1)

pm + kq
| ≤ o(1),

wich cannot be true.
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Thank you for your
attention
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